

UnityPoint Des Moines

Goals:

Introduction

- Examine prevalence of reported neck pain and cervical spine (c-spine) fractures in elderly patients who presented to the emergency department after sustaining a traumatic injury
- Determine if patient characteristics, mechanism of injury, comorbid health conditions, or severity of injury influenced the prevalence of neck pain in this population. Significance
- Clinical management guidelines (Canadian C-Spine Rule and the National Emergency X-Radiography Utilization Study) are regularly used to determine the need for computed tomography (CT) imaging of the c-spine
- One of the key inclusion criteria for both guidelines is the presence or absence of neck pain
- Our institution's previous research found that >20% of older trauma patients with c-spine fracture did not report the pain or tenderness components of somatic dysfunction on initial musculoskeletal exam

Methods

- Retrospective study performed at Level I trauma center in the Midwest
- Trauma registry was used to identify patients 55+ years old who presented to the hospital with blunt injury during the study period (April 2017 -December 2018)
- Excluded from analysis if Glasgow Coma Scale (GCS) was <14 at time of clinical examination
- 64-99 patients with c-spine fractures were required to detect a moderate effect size with a power of 0.80
- Patients considered "pain-free" if they did not complain of c-spine pain and denied tenderness to palpation on initial musculoskeletal exam

No Cervical Spine CT N=28

Male, n (% Age, media Positive blo Injury sever Other injure Intracrani Face Chest Abdomen Extremity Psychiatric Mortality

Pain in the Neck: Absence of cervical spine pain in elderly patients with fractures

Jason P Blake OMS III,¹ Sarah K Spilman MA, ² Nicholas H Kluesner MD, ² Chase N Deobald DO, ² Carlos A Pelaez ³ MD ¹Des Moines University, ²UnityPoint Health, ³The Iowa Clinic

igure 1. F	-low Chart of Reviewed Patients
	click image to enlarge)

Mechanism of Age/ Injury Sex 58 - F MVC - Highway Speeds 64 - F MVC - Highway Speeds 64 - M Fall - 8 steps 66 - F MVC - Highway Speed 67 - M Fall - 6-7 steps Tractor accident with ejection 69 - M Bicycle crash 15mph 70 - M MVC - Crash into light pole 73 - F Fall - same level Fall - same level 78 - M 79 - M MVC - Highway Speeds 86 - F Fall - 3 steps Fall - 2 steps 87 - M Fall - same level MVC - 45mph 93 - M Fall - same level 96 - F Fall - same level

- Age 65+ years
- ltered level of consciousness
- Distracting injury ntoxication
- Dangerous mechanism

	No Neck Pain	Neck Pain	p-
	(n=380)	(n=232)	value
)	205 (54%)	113 (49%)	.21
n (IQR)	74 (63, 84)	73 (63, 83)	.83
od alcohol, n (%)	46 (12%)	17 (7%)	.06
rity score (ISS), median (IQR)	9 (4, 14)	9 (4, 11)	.98
ed body region:			
al hemorrhage or skull fracture	130 (34%)	69 (30%)	.25
	35 (9%)	25 (11%)	.53
	114 (30%)	65 (28%)	.60
	45 (12%)	11 (5%)	.003
/	121 (32%)	66 (28%)	.38
disorder	25 (7%)	42 (18%)	<.001
	9 (2%)	4 (2%)	.59
	7 7		

Table 2. Demographic and injury characteristics of patients who received a CT Scan of the C-Spine (n=612) (click image to enlarge)

TAP TO **RETURN TO** KIOSK MENU

AMS in ED	Intoxi- cated	CCR	NEXUS
No	No	* (M)	-
GCS=14	No	* (M)	* (D, C)
No	Yes (0.15)	* (M)	* (D, I)
No	No	* (A,M)	* (D)
No	No	* (A,M)	-
No	No	* (A,M)	* (D)
No	No	* (A,M)	* (D)
No	No	* (A,M)	* (D)
No	No	* (A)	-
No	No	* (A)	-
No	No	* (A,M)	* (D)
No	No	* (A)	-
No	No	* (A)	* (D)
No	No	* (A)	-
No	No	* (A)	* (D)
No	No	* (A)	* (D)
GCS=14, dementia	No	* (A)	* (C)

Table 1. Asymptomatic Fractures (click image to enlarge)

See hyperlink <u>here</u>

Conclusion

- 21% of elderly patients with a cervical spine fracture did not report neck pain on initial examination
- The absence of neck pain cannot be used to definitively rule out c-spine fractures in this population and is an insufficient criterion for identifying which patients should receive c-spine CT imaging
- 40% of patients without neck pain (n=380) received CT imaging of the c-spine, suggesting that many providers are scanning this population liberally
- Applying the CCR and NEXUS criteria retroactively (Table 1) demonstrates the CCR would have detected all asymptomatic fractures, but the NEXUS criteria would have missed 6 patients
- The CCR's age criteria (age 65+) was responsible for catching 8 fractures that otherwise would have been missed using the CCR alone
- Patients aged 55-64 are not "protected" by the CCR's age criteria and are therefore potentially vulnerable to missed c-spine fractures; liberal imaging should be used in this population
- With the exception of abdominal distracting injuries, there were no detectable patterns to identify patient or injury characteristics that predicted asymptomatic cervical fractures
- Consider applying both CCR and NEXUS criteria when evaluating this population, especially those aged 55-64
- None of the pain-free fractures required an operative procedure, however 15 of 17 asymptomatic patients were discharged with a c-collar or brace

References

See hyperlink <u>here</u>

National Emergency X-Radiography Utilization Study (NEXUS)

Radiograhy

Table 1. Asymptomatic Fractures

	Injury	ED	cated	CCR	NEXUS
58 - F	MVC - Highway Speeds	No	No	* (M)	-
64 - F	MVC - Highway Speeds	GCS=14	No	* (M)	* (D, C)
64 - M	Fall - 8 steps	No	Yes (0.15)	* (M)	* (D, I)
66 - F	MVC - Highway Speeds	No	No	* (A,M)	* (D)
67 - M	Fall - 6-7 steps	No	No	* (A,M)	-
69 - M	Tractor accident with ejection	No	No	* (A,M)	* (D)
69 - M	Bicycle crash - 15mph	No	No	* (A,M)	* (D)
70 - M	MVC - Crash into light pole	No	No	* (A,M)	* (D)
73 - F	Fall - same level	No	No	* (A)	-
78 - M	Fall - same level	No	No	* (A)	-
79 - M	MVC - Highway Speeds	No	No	* (A,M)	* (D)
86 - F	Fall - 3 steps	No	No	* (A)	-
87 - M	Fall - 2 steps	No	No	* (A)	* (D)
90 - F	Fall - same level	No	No	* (A)	-
91 - F	MVC - 45mph	No	No	* (A)	* (D)
93 - M	Fall - same level	No	No	* (A)	* (D)
96 - F	Fall - same level	GCS=14, dementia	No	* (A)	* (C)

- ~ D
- М

reference for el or competiousmese

Distracting injury Intoxication

Dangerous mechanism

Table 2. Demographic and injury characteristics of patients who received a CT Scan of the C-Spine (N=612)

Male, n (%) Age, median (IQR) Positive blood alcohol, n (%) Injury severity score (ISS), median (IQR) Other injured body region: Head bleed or skull fracture Face Chest Abdomen Extremity Psychiatric disorder Mortality

No Neck Pain (N=380)205 (54%) 74 (63, 84) 46 (12%) 9 (4, 14)

Neck Pain (n=232) 113 (49%) 73 (63, 83) 17 (7%) 9 (4, 11)

130 (34%) 69 (30%) 35 (9%) 25 (11%) 114(30%)65 (28%) 45 (12%) 11 (5%) 121 (32%) 66 (28%) 25 (7%) 42 (18%) 9 (2%) 4 (2%)

All analyses were performed with IBM SPSS Basic Statistics for Windows, version 20.0 (IBM Corp, 2011). Descriptive statistics were examined and reported for continuous data as medians and interquartile ranges; categorical data were reported as counts and percentages. All statistical tests were two-tailed and based on a 0.05 significance level. Because data were not normally distributed and sample sizes were unequal, differences between medians were assessed using the Kruskal-Wallis one-way analysis of variance. Differences between nominal variables were assessed using the chi-square test.

Asemota, Anthony O., et al. "Analysis of Cervical Spine Injuries in Elderly Patients from 2001 to 2010 Using a Nationwide Database: Increasing Incidence, Overall Mortality, and Inpatient Hospital Charges." World Neurosurgery, vol. 120, 2018, doi:10.1016/j.wneu.2018.07.228.

Davis, James W., et al. "The Etiology Of Missed Cervical Spine Injuries." *The Journal of Trauma: Injury, Infection, and Critical Care*, vol. 34, no. 3, 1993, pp. 342–346., doi:10.1097/00005373-199303000-00006.

Evans, Daniel, et al. "Application of National Emergency X-Ray Utilizations Study Low-Risk c-Spine Criteria in High-Risk Geriatric Falls." The American Journal of Emergency Medicine, vol. 33, no. 9, 2015, pp. 1184–1187., doi:10.1016/j.ajem.2015.05.031.

Gerrelts, Brian D., et al. "Delayed Diagnosis of Cervical Spine Injuries." The Journal of Trauma: Injury, Infection, and Critical Care, vol. 31, no. 12, 1991, pp. 1622–1626., doi:10.1097/00005373-199112000-00010.

Healey, Christopher D., et al. "Asymptomatic Cervical Spine Fractures." *Journal of Trauma and Acute Care Surgery*, vol. 83, no. 1, 2017, pp. 119–125., doi:10.1097/ta.000000000000001497.

Lowery, Douglas W., et al. "Epidemiology of Cervical Spine Injury Victims." *Annals of Emergency Medicine*, vol. 38, no. 1, 2001, pp. 12–16., doi:10.1067/mem.2001.116149. Platzer, Patrick, et al. "Delayed or Missed Diagnosis of Cervical Spine Injuries." *The Journal of Trauma: Injury, Infection, and Critical Care*, vol. 61, no. 1, 2006, pp. 150–155., doi:10.1097/01.ta.0000196673.58429.2a.

Reid, D. C., et al. "Etiology and Clinical Course of Missed Spine Fractures." The Journal of Trauma: Injury, Infection, and Critical Care, vol. 27, no. 9, 1987, pp. 980–986., doi:10.1097/00005373-198709000-00005.

Stiell, Ian G., et al. "The Canadian C-Spine Rule versus the NEXUS Low-Risk Criteria in Patients with Trauma." New England Journal of Medicine, vol. 349, no. 26, 2003, pp. 2510–2518., doi:10.1056/nejmoa031375.

Data Analysis

References

